Modular invariant representations of infinite-dimensional Lie algebras and superalgebras.
نویسندگان
چکیده
In this paper, we launch a program to describe and classify modular invariant representations of infinite-dimensional Lie algebras and superalgebras. We prove a character formula for a large class of highest weight representations L(lambda) of a Kac-Moody algebra [unk] with a symmetrizable Cartan matrix, generalizing the Weyl-Kac character formula [Kac, V. G. (1974) Funct. Anal. Appl. 8, 68-70]. In the case of an affine [unk], this class includes modular invariant representations of arbitrary rational level m = t/u, where t [unk] Z and u [unk] N are relatively prime and m + g >/= g/u (g is the dual Coxeter number). We write the characters of these representations in terms of theta functions and calculate their asymptotics, generalizing the results of Kac and Peterson [Kac, V. G. & Peterson, D. H. (1984) Adv. Math. 53, 125-264] and of Kac and Wakimoto [Kac, V. G. & Wakimoto, M. (1988) Adv. Math. 70, 156-234] for the u = 1 (integrable) case. We work out in detail the case [unk] = A(1) ((1)), in particular classifying all its modular invariant representations. Furthermore, we show that the modular invariant representations of the Virasoro algebra Vir are precisely the "minimal series" of Belavin et al. [Belavin, A. A., Polyakov, A. M. & Zamolodchikov, A. B. (1984) Nucl. Phys. B 241, 333-380] using the character formulas of Feigin and Fuchs [Feigin, B. L. & Fuchs, D. B. (1984) Lect. Notes Math. 1060, 230-245]. We show that tensoring the basic representation and modular invariant representations of A(1) ((1)) produces all modular invariant representations of Vir generalizing the results of Goddard et al. [Goddard P., Kent, A. & Olive, D. (1986) Commun. Math. Phys. 103, 105-119] and of Kac and Wakimoto [Kac, V. G. & Wakimoto, M. (1986) Lect. Notes Phys. 261, 345-371] in the unitary case. We study the general branching functions as well. All these results are generalized to the Kac-Moody superalgebras introduced by Kac [Kac, V. G. (1978) Adv. Math. 30, 85-136] and to N = 1 super Virasoro algebras. We work out in detail the case of the superalgebra B(0, 1)((1)), showing, in particular, that restricting to its even part produces again all modular invariant representations of Vir. These results lead to general conjectures about asymptotic behavior of positive energy representations and classification of modular invariant representations.
منابع مشابه
Universal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کاملOn generalized reduced representations of restricted Lie superalgebras in prime characteristic
Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...
متن کاملIrreducible Representations of Solvable Lie Superalgebras
The description of irreducible finite dimensional representations of finite dimensional solvable Lie superalgebras over complex numbers given by V. Kac is refined. In reality these representations are not just induced from a polarization but are twisted ones, as infinite dimensional representations of solvable Lie algebras. Various cases of irreducibility (general and of type Q) are classified.
متن کاملKostant Homology Formulas for Oscillator Modules of Lie Superalgebras
We provide a systematic approach to obtain formulas for characters and Kostant u-homology groups of the oscillator modules of the finite dimensional general linear and ortho-symplectic superalgebras, via Howe dualities for infinite dimensional Lie algebras. Specializing these Lie superalgebras to Lie algebras, we recover, in a new way, formulas for Kostant homology groups of unitarizable highes...
متن کاملGraded Contractions of Bilinear Invariant Forms of Lie Algebras
ABSTRACT. We introduce a new construction of bilinear invariant forms on Lie algebras, based on the method of graded contractions. The general method is described and the Z2-, Z3-, and Z2 ⊗ Z2-contractions are found. The results can be applied to all Lie algebras and superalgebras (finite or infinite dimensional) which admit the chosen gradings. We consider some examples: contractions of the Ki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 85 14 شماره
صفحات -
تاریخ انتشار 1988